New algorithms for the LCS problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithms for the LCS Problem

The LCS problem is to determine a longest common subsequence (LCS) of two symbol sequences. Two algorithms which improve two existing results, respectively, are presented. Let m, n be the lengths of the two input strings, with m Q n, p being the length of the LCS, and s being the number of distinct symbols appearing in the two strings. It is shown that the first algorithm presented requires at ...

متن کامل

New Efficient Algorithms for LCS and Constrained LCS Problem

In this paper, we study the classic and well-studied longest common subsequence (LCS) problem and a recent variant of it namely constrained LCS (CLCS) problem. In CLCS, the computed LCS must also be a supersequence of a third given string. In this paper, we first present an efficient algorithm for the traditional LCS problem that runs in O(R log log n + n) time, where R is the total number of o...

متن کامل

New efficient algorithms for the LCS and constrained LCS problems

In this paper, we study the classic and well-studied longest common subsequence (LCS) problem and a recent variant of it, namely the constrained LCS (CLCS) problem. In the CLCS problem, the computed LCS must also be a supersequence of a third given string. In this paper, we first present an efficient algorithm for the traditional LCS problem that runs in O(R log logn+ n) time, where R is the to...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Algorithms for Two Versions of LCS Problem for Indeterminate Strings

We study the complexity of the longest common subsequence (LCS) problem from a new perspective. By an indeterminate string (istring, in short) we mean a sequence e X = e X[1] e X[2] . . . e X[n], where e X[i] ⊆ Σ for each i, and Σ is a given alphabet of potentially large size. A subsequence of e X is any usual string over Σ which is an element of the finite (but usually of exponential size) lan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1984

ISSN: 0022-0000

DOI: 10.1016/0022-0000(84)90025-4